I.1 What Is Mathematics About?
I.2 The Language and Grammar of Mathematics
I.3 Some Fundamental Mathematical Definitions
I.4 The General Goals of Mathematical Research
Part II The Origins of Modern Mathematics
II.1 From Numbers to Number Systems
II.3 The Development of Abstract Algebra
II.5 The Development of Rigor in Mathematical Analysis
II.6 The Development of the Idea of Proof
II.7 The Crisis in the Foundations of Mathematics
Part III Mathematical Concepts
III.2 The Axiom of Determinacy
III.9 Compactness and Compactification
III.10 Computational Complexity Classes
III.11 Countable and Uncountable Sets
III.16 Differential Forms and Integration
III.20 Dynamical Systems and Chaos
III.22 The Euclidean Algorithm and Continued Fractions
III.23 The Euler and Navier-Stokes Equations
III.25 The Exponential and Logarithmic Functions
III.26 The Fast Fourier Transform
III.38 Homology and Cohomology
III.41 Irrational and Transcendental Numbers
III.49 Linear and Nonlinear Waves and Solitons
III.50 Linear Operators and Their Properties
III.51 Local and Global in Number Theory
III.62 Normed Spaces and Banach Spaces
III.64 Optimization and Lagrange Multipliers
III.71 Probability Distributions
III.76 Quaternions, Octonions, and Normed Division Algebras
III.80 The Riemann Zeta Function
III.81 Rings, Ideals, and Modules
III.83 The Schrödinger Equation
III.92 Trigonometric Functions
III.99 The Zermelo–Fraenkel Axioms
Part IV Branches of Mathematics
IV.3 Computational Number Theory
IV.10 Geometric and Combinatorial Group Theory
IV.12 Partial Differential Equations
IV.13 General Relativity and the Einstein Equations
IV.17 Vertex Operator Algebras
IV.18 Enumerative and Algebraic Combinatorics
IV.19 Extremal and Probabilistic Combinatorics
IV.20 Computational Complexity
IV.25 Probabilistic Models of Critical Phenomena
IV.26 High-Dimensional Geometry and Its Probabilistic Analogues
V.2 The Atiyah–Singer Index Theorem
V.4 The Birch–Swinnerton-Dyer Conjecture
V.7 The Classification of Finite Simple Groups
V.13 The Fundamental Theorem of Algebra
V.14 The Fundamental Theorem of Arithmetic
V.16 Gromov’s Polynomial-Growth Theorem
V.17 Hilbert’s Nullstellensatz
V.18 The Independence of the Continuum Hypothesis
V.20 The Insolubility of the Halting Problem
V.21 The Insolubility of the Quintic
V.22 Liouvflle’s Theorem and Roth’s Theorem
V.23 Mostow’s Strong Rigidity Theorem
V.26 The Prime Number Theorem and the Riemann Hypothesis
V.27 Problems and Results in Additive Number Theory
V.28 From Quadratic Reciprocity to Class Field Theory
V.29 Rational Points on Curves and the Mordell Conjecture
V.30 The Resolution of Singularities
V.32 The Robertson–Seymour Theorem
V.34 The Uniformization Theorem
VI.1 Pythagoras (ca. 569 B.C.E.–ca.494 B.C.E.)
VI.2 Euclid (ca. 325 B.C.E.–ca. 265 B.C.E.)
VI.3 Archimedes (ca. 287 B.C.E.–212 B.C.E.)
VI.4 Apollonius (ca. 262 B.C.E.–ca. 190 B.C.E.)
VI.5 Abu Ja’far Muhammad ibn Mūsā al-Khwārizmī (800–847)
VI.6 Leonardo of Pisa (known as Fibonacci) (ca. 1170–ca. 1250)
VI.7 Girolamo Cardano (1501–1576)
VI.8 Rafael Bombelli (1526-after 1572)
VI.9 François Viète (1540–1603)
VI.10 Simon Stevin (1548–1620)
VI.11 René Descartes (1596–1650)
VI.12 Pierre Fermat (160?-1665)
VI.13 Blaise Pascal (1623–1662)
VI.14 Isaac Newton (1642–1727)
VI.15 Gottfried Wilhelm Leibniz (1646–1716)
VI.16 Brook Taylor (1685–1731)
VI.17 Christian Goldbach (1690–1764)
VI.18 The Bernoullis (f1.18th century)
VI.19 Leonhard Euler (1707–1783)
VI.20 Jean Le Rond d’Alembert (1717–1783)
VI.21 Edward Waring (ca.1735–1798)
VI.22 Joseph Louis Lagrange (1736–1813)
VI.23 Pierre-Simon Laplace (1749–1827)
VI.24 Adrien-Marie Legendre (1752–1833)
VI.25 Jean-Baptiste Joseph Fourier (1768–1830)
VI.26 Carl Friedrich Gauss (1777–1855)
VI.27 Siméon-Denis Poisson (1781–1840)
VI.28 Bernard Bolzano (1781–1848)
VI.29 Augustin-Louis Cauchy (1789–1857)
VI.30 August Ferdinand Möbius (1790–1868)
VI.31 Nicolai Ivanovich Lobachevskii (1792–1856)
VI.32 George Green (1793–1841)
VI.33 Niels Henrik Abel (1802–1829)
VI.34 János Bolyai (1802–1860)
VI.35 Carl Gustav Jacob Jacobi (1804–1851)
VI.36 Peter Gustav Lejeune Dirichlet (1805–1859)
VI.37 William Rowan Hamilton (1805–1865)
VI.38 Augustus De Morgan (1806–1871)
VI.39 Joseph Liouville (1809–1882)
VI.40 Ernst Eduard Kummer (1810–1893)
VI.41 Évariste Galois (1811–1832)
VI.42 James Joseph Sylvester (1814–1897)
VI.43 George Boole (1815–1864)
VI.44 Karl Weierstrass (1815–1897)
VI.45 Pafnuty Chebyshev (1821–1894)
VI.46 Arthur Cayley (1821–1895)
VI.47 Charles Hermite (1822–1901)
VI.48 Leopold Kronecker (1823–1891)
VI.49 Georg Friedrich Bernhard Riemann (1826–1866)
VI.50 Julius Wilhelm Richard Dedekind (1831–1916)
VI.51 Émile Léonard Mathieu (1835–1890)
VI.52 Camille Jordan (1838–1922)
VI.54 Georg Cantor (1845–1918)
VI.55 William Kingdon Clifford (1845–1879)
VI.56 Gottlob Frege (1848–1925)
VI.57 Christian Felix Klein (1849–1925)
VI.58 Ferdinand Georg Frobenius (1849–1917)
VI.59 Sofya (Sonya) Kovalevskaya (1850–1891)
VI.60 William Burnside (1852–1927)
VI.61 Jules Henri Poincaré (1854–1912)
VI.62 Giuseppe Peano (1858–1932)
VI.63 David Hilbert (1862–1943)
VI.64 Hermann Minkowski (1864–1909)
VI.65 Jacques Hadamard (1865–1963)
VI.66 Ivar Fredholm (1866–1927)
VI.67 Charles-Jean de la Vallée Poussin (1866–1962)
VI.68 Felix Hausdorff (1868–1942)
VI.69 Élie Joseph Cartan (1869–1951)
VI.71 Bertrand Arthur William Russell (1872–1970)
VI.72 Henri Lebesgue (1875–1941)
VI.73 Godfrey Harold Hardy (1877–1947)
VI.74 Frigyes (Frédéric) Riesz (1880–1956)
VI.75 Luitzen Egbertus Jan Brouwer (1881–1966)
VI.76 Emmy Noether (1882–1935)
VI.77 Waclaw Sierpiński (1882–1969)
VI.78 George Birkhoff (1884–1944)
VI.79 John Edensor Littlewood (1885–1977)
VI.80 Hermann Weyl (1885–1955)
VI.81 Thoralf Skolem (1887–1963)
VI.82 Srinwasa Ramanujan (1887–1920)
VI.83 Richard Courant (1888–1972)
VI.84 Stefan Banach (1892–1945)
VI.85 Norbert Wiener (1894–1964)
VI.87 Alfred Tarski (1901–1983)
VI.88 Andrei Nikolaevich Kolmogorov (1903–1987)
VI.89 Alonzo Church (1903–1995)
VI.90 William Valiance Douglas Hodge (1903–1975)
VI.91 John von Neumann (1903–1957)
VI.95 Abraham Robinson (1918–1974)
VI.96 Nicolas Bourbaki (1935–)
Part VII The Influence of Mathematics
VII.1 Mathematics and Chemistry
VII.3 Wavelets and Applications
VII.4 The Mathematics of Traffic in Networks
VII.5 The Mathematics of Algorithm Design
VII.6 Reliable Transmission of Information
VII.7 Mathematics and Cryptography
VII.8 Mathematics and Economic Reasoning
VII.9 The Mathematics of Money
VII.10 Mathematical Statistics
VII.11 Mathematics and Medical Statistics
VII.12 Analysis, Mathematical and Philosophical
VIII.1 The Art of Problem Solving
VIII.2 “Why Mathematics” You Might Ask
VIII.3 The Ubiquity of Mathematics
VIII.5 Mathematics: An Experimental Science
VIII.6 Advice to a Young Mathematician
VIII.7 A Chronology of Mathematical Events